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Abstract

Sequential sampling is a commonly studied decision-making environment where
evidence accumulates over time until a decision boundary is reached. Normative
theories of optimal stopping largely address homogeneous streams of evidence,
where each time step carries the same amount of information. However, evidence
from natural environments is often heterogeneous, with the informativeness of
evidence varying over time; the optimal stopping rule under such conditions
remains unknown. We trained recurrent neural networks (RNNs) to make decisions
when receiving heterogeneous evidence streams and considering sampling costs
and a time constraint. In addition to replicating classic collapsing boundaries for
stopping under a time constraint, we found a novel early commitment effect: the
RNN adopts a lower decision boundary in the earliest time steps of decision-making.
Normative analysis validated such a strategy as optimal. Examination of model
policies showed that early commitment and collapsing boundary were driven by
distinct mechanisms associated with sampling cost and time constraint, respectively.
By bridging artificial networks and normative analysis, our work identifies early
commitment as an optimal policy for decision-making in naturalistic environments.

1 Introduction

Decision making is often modeled as a dynamic process where evidence is accumulated over time
towards a fixed boundary to inform choices (Gold and Shadlen, 2007; Ratcliff, 1978; Wald, 1947). In
the standard drift diffusion model (DDM) for this process, such a decision boundary is assumed to
be fixed. Recent findings, however, suggest that humans and animals do not use constant decision
boundaries (Churchland et al., 2008; Cisek et al., 2009; Drugowitsch et al., 2012; Forstmann et al.,
2010; Hawkins et al., 2015). Normative models support this conclusion, revealing that the decision
boundary ’collapses’ to a lower evidentiary threshold at long deliberation; agents trade off between
the benefits of accumulating more evidence against the potential costs of running out of time (Bogacz
et al., 2006; Tajima et al., 2016, 2019). In addition to this well-tested phenomenon, lower thresholds
for stopping may also occur at the very early time of decision. For example, people are more willing
to commit to a choice with "good enough" evidence in the early stage of decision-making when the
cost (investment) they have spent is small. We term this phenomenon the early commitment effect;
decision-makers commit to a choice at a lower evidentiary threshold at the very early time of decision.
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One possible reason that the early commitment effect may have been overlooked is a disparity between
the temporal characteristics of evidence used in laboratory tasks and real-world settings. Most labora-
tory paradigms employ homogeneous streams of evidence, where each time step provides a consistent
amount of information (with fewer exceptions: Drugowitsch et al., 2016; Kira et al., 2015; Knowlton
et al., 1994; Yang and Shadlen, 2007; Yates et al., 2017). In contrast, naturalistic environments often
involve heterogeneous streams of evidence, where the informativeness of sample varies over time.
The optimal stopping policy under heterogeneous evidence remains poorly understood.

Here, we investigate how recurrent neural networks (RNNs) learn time-varying decision thresholds
when receiving heterogeneous inputs. We find that these well-trained networks, in addition to
implementing a collapsing threshold, develop a policy of early commitment—adopting lower decision
thresholds in the earliest time periods of decision-making. Normative analysis using dynamic
programming validates this additional early strategy as optimal. Analyzing the policies RNNs learn
by examining hidden units uncovers that the network adjusts its decision policies in a time-varying
manner. Distinct mechanisms drive the early commitment and the collapsing threshold strategies.

In summary, this work identifies early commitment as a novel optimal decision policy when receiving
heterogeneous streams of evidence. The findings highlight the importance understanding optimal
decision strategies in naturalistic environments for both artificial systems and biological brains.

2 Methods

2.1 Sequential sampling decision-making task

We trained RNNs (GRU architecture, 64 hidden units, Fig. 1A; see details in Appendix A.1) (Cho
et al., 2014) to perform a sequential decision-making task. In this task (Fig. 1B), a hidden target (A or
B) was randomly set as the correct response at the beginning of each trial. The stimulus that provided
evidence about which target was correct was then drawn from a distribution of possible signals
associated with that target (Fig. 1E), one at a time with replacement, and provided to the RNN (Fig.
1A). The RNN updated its recurrent dynamics upon receiving each new stimulus. The agent’s goal
was to infer the correct target to select in order to receive a reward (r). Since each stimulus contains
a different amount of information about the targets (Figs. 1C-E), it results in varying amounts of
evidence from each sampling, consisting of a heterogeneous evidence stream.

At each time step, the agent obtains r = +1 for a correct decision or r = 0 if wrong; otherwise, the
agent continues sampling a new piece of evidence at a cost of c. To test how different levels of
sampling costs and time constraints affect the decision strategies of RNNs, we trained the RNNs
under different sampling cost levels (i.e., 0.01, 0.02, 0.03, 0.04, 0.05). These levels of sampling
costs were tested under two different time-constraint conditions. When there is no time constraint
(Environment 1), the agent is allowed to sample for an infinite number of steps. When under a time
constraint (Environment 2), there is a 10-time-step limit for the RNN to sample information and make
choices; out of time would result in zero reward and still paying the sampling costs in the past steps.

2.2 Training algorithm

The RNNs were trained as reinforcement-learning agents on-policy using an advantage actor–critic
(A2C) algorithm. The actor produced a policy over the three possible actions (choosing A, choosing
B, or continuing sampling), while the critic estimated the expected value of the current state (see
details in Appendix A.2). Training objectives combined policy optimization, value prediction, and an
entropy regularizer to promote exploration. Models were optimized with standard backpropagation
and subsequently evaluated on held-out testing trials with frozen network weights.

3 Results

3.1 Overall performance of RNNs

Across two environments, the agent achieved comparable levels of choice accuracy and average
return (Table 1 and 2, Fig. S1C and Fig. S2C in Appendix A.3) with greater difficulties, compared
to monkey performance on similar task (85% and 80%) (Kira et al., 2015). The reaction times of
the agents resulted in chronometric curves typically observed in humans and animals (Fig. S1A,
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Figure 1: The RNN and the task setup. (A) The RL agent of a 64-unit GRU was trained using an
A2C algorithm. At every time step, the agent received one out of sixteen stimuli using one-hot vector
coding, with the actor output providing actions and a critic output providing value expectation. (B)
The sequential sampling task. Each episode included a single trial. The agent received one evidentiary
stimulus at a time drawn from the latent target distribution. The episode was terminated when the
agent chose one of two targets. (C) The stimuli were generated from two Gaussian distributions,
N(-2.2, 5) (target A, blue) and N(2.2, 5) (target B, red). (D) Sixteen discrete stimuli were sampled
from the Gaussian distributions with log-likelihood ratios (logLRs) uniformly spaced between -0.8
and 0.8. (E) The frequencies and logLRs of sixteen discrete stimuli were visualized.

Fig. S2A). The choice probability curves (Fig. S1B, Fig. S2B) showed psychometric curves across
cumulative evidence levels. The decision weight associated with each stimulus impact on the agents’
binary choices exhibited linear curves that captured the true log-likelihood ratios (logLRs) (Fig. S1B;
Appendix A.6.1), indicating a near-optimal accumulation of evidence.

3.2 Early commitment under sampling cost

We found that the agents adopted a time-varying decision threshold even at the earliest times for
decision-making. By visualizing the distributions of logLRs of the evidence when the agents decided
to choose A, choose B, or continue sampling (blue, red, and green outlines, respectively, in Fig. 2A,
D), we observed an early commitment effect from both environments: the agents tend to commit to a
choice using more liberal criteria at the earlier time steps of decision (Red and blue ticks as the mean
values of LogLRs for the chosen trials in Figs. 2A, D). Notably, monkeys show the same pattern in
the early periods of decision-making (Kira et al., 2015). By changing the sampling costs, the early
commitment effect was robustly preserved in both time-constraint environments (Fig. 2B, E).

3.3 Collapsing boundary under time constraint

It is widely acknowledged that time constraints lead to collapsing of decision boundaries (Tajima
et al., 2016, 2019). Our RNNs replicated this effect when trained under a time constraint (Fig. 2D,
E), but not in the environment without a time constraint (Fig. 2A, B). Specifically, the agents collapse
the decision threshold in the later stages of decision-making.

3.4 Normative validations

Why do RNNs adopt this decision strategy? To answer this question, we performed a normative anal-
ysis within a resource-rational framework (Lieder and Griffiths, 2020) using dynamic programming
to derive the optimal policy in the current task setting with sampling costs, time constraints, and
heterogeneous evidence stream (see Appendix A.5). In contrast to the assumption of classic theory
(Wald, 1947) (Appendix A.4), we found that both the early commitment and the collapsing boundary
strategies implemented by the RNNs appeared in the optimal solutions (Appendix A.5, Fig. S2).
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Figure 2: Networks learn time-varying decision thresholds and policies under different time con-
straints and sampling costs (A) The model trained under a small sampling cost (c = −.01) without a
time constraint showed an early commitment effect in the early stage of decision, but no collapsing
boundary at the late stage. Outlines showed the distributions of LogLRs in the trials of chosen A
(blue), chosen B (red), and sampling (green). The blue and red ticks indicated the mean values of
LogLRs of the distributions, i.e., the classical definition of decision boundary. (B) Without a time
constraint, the mean values of decision boundaries for chosen A (blue) and chosen B (red) uncovered
robust early commitment across levels of sampling costs (graded colors). It exhibited an decreasing
early commitment effect by lowering decision thresholds when increasing sampling cost (C) The
probabilities of sampling encoded in the RNN policies were aggregated according to the cumulative
evidence logLRs. The early commitment effect were driven by the sharpness of the sampling curves
(D) Similar to (A) but with with a time constraint at time step 10, the RNNs exhibited collapsing
boundary at the later time steps in addition to early commitment. (E) Similar to (B) but with a time
constraint of 10 time steps, the RNN showed robust mixtures of collapsing boundaries and early
commitment across levels of sampling costs. (F) The collapsing boundary were driven by shrinking
and flattening the sampling curve to ensure that the decision is made.
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When the environment posed sampling cost but no time constraints, the optimal decision boundary
showed an early commitment effect, where lower criteria were used in the earlier time steps (Fig.
S2A). Analysis revealed that this was due to the trade-off between a time-varying marginal expected
gain of sampling and the cost of sampling (Appendix A.5). This reflects a fact that a heterogeneous
evidence stream allows the amount of evidence to jump above a "good enough" level with even
very few samples in the earliest steps, leading to more liberal criteria early on in a trial. The early
commitment effect became less prominent when the sampling cost increased, due to the lowered
thresholds overall in the later time steps, consistent with the RNN’s strategy (Fig. S2A; Fig. 2B).

By explicitly adding the urgency costs to mimick the time constraint setting in environment 2, we
replicated the collapsing boundaries (Fig. S2B). Higher urgency costs lead to steeper collapse in the
later stages - a well-documented phenomenon in the literature (Tajima et al., 2016, 2019).

3.5 Distinct mechanisms between early commitment and collapsing boundary

We further analyzed the policies πθ learned by the RNNs over time steps, indicating the inferred
probabilities over three possible actions: choosing A, choosing B, and continuing sampling. The
probability of sampling psampling exhibited a bell-shaped dependence on the cumulative logLRs of
the evidence. This pattern was consistently observed across two environments and persisted over
temporal stages over the decision-making process. In general, the RNN agents were more likely to
stop sampling and commit to a choice when the evidence was larger (Figs. 2C, F). However, the
shapes of the curves were "soft", indicating a stochastic, instead of deterministic, decision strategy.
In other words, even the exact same magnitude of cumulative logLRs could lead to either a choice or
continued sampling in a probabilistic manner.

By comparing the policies learned across different environments, we found that early commitment
and collapsing boundaries were driven by distinct mechanisms. Increasing sampling costs reduced
the width of the bell-shaped curves, indicating that the agent adopted lower psampling across all levels
of evidence (see narrower boundaries under higher sampling costs in Fig. 2C, colored in green
gradients; such a pattern remained across different time steps). The reduction was greater in larger
evidence logLRs. This indicates a trade-off between the cost of sampling and the marginal gain from
sampling, which more likely leads to stopping sampling when the evidence is "good enough". Given
the heterogeneous environment, "good enough" evidence would show up unevenly in the earlier
stages with very few samples, which causes the early commitment effect we observed here.

In contrast, under a time constraint, psampling decreased over time, regardless of the sampling costs.
This indicated a separate mechanism from the sampling cost (Fig. 2F). Moreover, the impact of the
time constraint was time-varying. In the earlier time steps, the agent gradually shrinked the width of
the bell shapes over time; when approaching the end of the trial, the agent exhibited a large decrease
in psampling by flattening the bell shape curves to ensure making a choice within the time limit. Further
PCA analysis of the RNNs found a time-coding component in their hidden states, suggesting an
adaptive strategy adopted by the networks regarding the time constraints (Fig. S4).

4 Conclusion

The current study investigates how recurrent neural networks integrate heterogeneous evidence
sequentially to inform a decision. Our findings reveal early commitment as a novel strategy to
maximize reward when receiving heterogeneous streams of evidence, in addition to the classical
collapsing boundaries under time constraints. These findings show significance in understanding
decision strategies in naturalistic settings for both artificial systems and biological brains.

5 Limitations

The current implementation of normative analysis is based on an assumption that the agent has
one-step myopic computation on the future reward predictions instead of a backward induction on the
values. Although many studies show that myopic computation converges with the values of backward
induction, we may further compare the potential differences. In addition, the time constraint during
RNNs training was set as a hard boundary at the 10th time step; whereas, the time cost during
dynamic programming was explicitly set as a cost increasing over time steps. Further analysis is
needed to better interpret the connection between neural network behavior and normative analysis.
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A Appendix

A.1 Model architecture

The model consisted of an input layer, 64 gated recurrent units (GRU) (Cho et al., 2014), an actor
head, and a critic head. At each time step, after receiving the input x of stimuli encoded as a one-hot
vector, the GRU updates its hidden state according to:

rt = σ(W rxt +U rht−1 + br) (1)
zt = σ(W zxt +Uzht−1 + bz) (2)

h̃t = tanh(W hxt +Uh (rt ⊙ ht−1) + bh) (3)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4)

Then, the hidden states ht are projected into the actor and critic using a single linear layer, respectively.
The actor function θ(·) produces the policy πθ, indicating the inferred probabilities over three possible
action (choosing A, choosing B, or continuing sampling). The critic function ϕ(·) estimates the
expected value of the current state.

A.2 Training algorithm

To maximize reward, we trained the reinforcement learning(RL) agent on-policy using the advantage
actor-critic (A2C) algorithm (Mnih et al., 2016; Jensen, 2024). The objective function followed the
typical form was used to do backpropagation:

J(θ, ϕ) = Et

log πθ(a|st)At︸ ︷︷ ︸
actor

+βv (Rt − Vϕ(st))
2︸ ︷︷ ︸

critic

+βe H(π(·|st))︸ ︷︷ ︸
entropy

 (5)

where πθ is the decision policy, st is the current state given the observations seen so far at step t, a
are the possible actions, At = Rt − Vϕ(st) is the advantage function between the actual reward Rt

and the reward expectation Vϕ(st). The policy (actor) term encourages the network to take actions to
maximize returns. The value term (critic) trains the network to predict the amount of return. The
entropy term encourages exploration behavior to prevent the network from being trapped in local
minima.

During training, the auxiliary loss coefficients were initially set to βv = 0.05 and βe = 0.05. To
progressively reduce the contribution of the auxiliary entropy-related term relative to the policy loss,
βe was annealed from its initial value to 1× 10−3 over the first half of training. Concurrently, the
learning rate was decayed from 1× 10−3 to 1× 10−5 in order to facilitate a finer exploration of the
gradient. All models were trained for 1.0× 107 episodes (trials) with a batch size of 128, employing
the Adam optimizer (Kingma and Ba, 2017). After training, we froze the network weights and
analyzed the models’ behaviors based on 5× 104 testing trials.

A.3 Behavioral metrics of the RNNs trained under different environments

Table 1: Average return of RNNs under different environments with varied sampling costs

Sample cost 0.01 0.02 0.03 0.04 0.05

Environment 1 0.8730 0.7948 0.7383 0.6981 0.6706
Environment 2 0.8290 0.7722 0.7294 0.6926 0.6658
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Table 2: Decision accuracy of RNNs under different environments with varied sampling costs

Sample cost 0.01 0.02 0.03 0.04 0.05

Environment 1 0.9627 0.9215 0.8770 0.8390 0.8085
Environment 2 0.8863 0.8656 0.8431 0.8193 0.7907

Figure S1: Behaviors Metrics of the RNNs trained in Environment 1 with different sampling
cost (A) Models showed typical positive skewed distributions of decision times. (B)The psychometric
curves of choice probability as a function of the logLRs of the cumulative evidence. (C) The
psychometric curves of choice accuracy as a function of the logLRs of the cumulative evidence. Red
lines indicate the theoretical optimum. (D) The models’ decision weights on the sixteen stimuli
varying in the amount of information showed quasi-linear curves between the ground truth logLRs
and the decision weights contributed to binary choices.
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Figure S2: Behaviors Metrics of the RNNs trained in Environment 2 with different sampling
cost (A) Models showed typical positive skewed distributions of decision times. (B)The psychometric
curves of choice probability as a function of the logLRs of the cumulative evidence. (C) The
psychometric curves of choice accuracy as a function of the logLRs of the cumulative evidence. Red
lines indicate the theoretical optimum. (D) The models’ decision weights on the sixteen stimuli
varying in the amount of information showed quasi-linear curves between the ground truth logLRs
and the decision weights contributed to binary choices.
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A.4 The classic theory of sequential probability ratio test

When decision evidence is sampled sequentially, the classic theory employs the sequential probability
ratio test (SPRT) as an optimal evidence accumulation process (Wald, 1947).

Consider that we observed a series of samples {x1, x2, ..., xt} from either f0(X) or f1(X) distribu-
tion. That leads to two alternative hypotheses H0 and H1, when inferring the underlying distribution
given the observed samples. Let α and β be the error rates of rejecting H0 and H1, respectively.
Wald (1947) minimized the samples taken when subject to a certain false rate:

min
S∈S

π0E0[n] + π1E1[n] (6)

s.t.
S

Pr
0
(refuse H0) ≤ α,

S

Pr
1
(accept H0) ≤ β (7)

To achieve a specific first-type error rate α and second-type error rate β, SPRT predicts a limited
number of samples to reach the specified level of accuracy. derived that the decision threshold a and
b can be simply written as the following forms:

a ≈ log
β

1− α
(8)

b ≈ log
α

1− β
(9)

At each time step, the likelihood ratio between these two hypotheses given the current evidence xt is
log-transformed and defined as ℓt:

ℓt = ln
f1(xt)

f0(xt)
. (10)

Integrating the likelihood of evidence in a Bayesian manner over n time steps results in an accumulated
log-likelihood as follows,

ℓn =

n∑
t=1

ln
f1(xt)

f0(xt)
(11)

The decision terminates when ℓn reaches the decision threshold a or b. It is proven that it requires a
limited number of samples to achieve the specified level of accuracy. However, this approach does
not specify what threshold is optimal when under cost, which is elaborated below.
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A.5 The normative model of sequential probability ratio test under costs

Distinguished from the classic theory of sequential probability ratio test above, we reconsidered
this question under the resource-rational framework(Lieder and Griffiths, 2020; Bhui et al., 2021).
Specifically, we developed a normative model to assess the optimal policies in our heterogeneous
environment with different types of costs.

To formalize the question, this sequential sampling task can be viewed as a Meta-level Markov
decision processes (Meta-MDPs), which is defined with a set of world states W , a set of mental states
M, a set of computations C, and a reward function R.

The world states W include two hypotheses {H0, H1}, with each inferring the corresponding true
world state that generates the observed samples x. Let f0(xt) = p(xt | H0) and f1(xt) = p(xt | H1)
be the sampling probabilities of x under the two world states. In the current setup (Fig. 1A), f0(xt)
and f1(xt) are two Gaussian distributions with different means µ0 and µ1 and the same variance σ:

H0 : x ∼ N (µ0, σ
2),

H1 : x ∼ N (µ1, σ
2)

The mental states M include a set of posterior beliefs bt at each time step the agent holds that
supports H1 and against H0 given the samples {x1, x2, ..., xt} (noted as x1:t in the following text for
simplicity). The belief state at each time step can be defined as bt = p(H1 | x1:t).

For the computation C, if the optimal agent chooses to sample at time t − 1, it can be viewed as
executing an additional computation c via Bayesian posterior update:

bt = p(H1 | x1:t) =
p(xt | H1) · bt−1

p(xt)
=

f1(xt) · bt−1

f1(xt) · bt−1 + f0(xt) · (1− bt−1)
(12)

Finally, the expected reward function R describes the expected value of executing each possible
action. In this task, it can be defined as follows,

R(b, a) =


R0(bt,⊥) if a = 0 (choose H0)
R1(bt,⊥) if a = 1 (choose H1)
−ctot + Ex|b[Vt+∆t(b

′
t+∆t(x))] if a = 2 (sample)

(13)

Here, ⊥ indicates the terminal action that is executed (i.e., commit to A or B) to end the Meta-MDP.
For the expected value of these two terminal actions:

R0(bt,⊥) = 1− bt (14)
R0(bt,⊥) = bt (15)

Here we assume that it depends on the current posterior belief πt on H0 and H1. In particular, the
more confident the agent is in one of the two hypotheses, the higher the expected value of committing
to a target.

For the expectation of sampling, it depends on the sum of the total cost ctot and the expected value of
obtaining a new sample in the next time step:

Ex|b
[
Vt+∆t

(
b′t+∆t(x)

)]
=

∫ ∞

−∞
Vt+∆t

(
b′t+∆t(x)

)
f(x | b) dx (16)

where b′t+∆t(x) denotes the possible updated belief in the next time step after obtaining a new
sample, Ex[V (b′(x))] denotes the expected future value over all possible beliefs following a new
sample x, f(x | bt+∆t) = bt · f1(x) + (1− bt) · f0(x) indicates the marginal observed probability
distribution. Here we obtained the posterior value Vt+∆t

(
b′t+∆t(x)

)
by looking up the value function

Vt

(
b′t+∆t(x)

)
in the current time step.
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To demonstrate the effect of sampling cost, we used different sampling cost ctotal under two environ-
ment. When no time constraints, there is only sampling cost for taking one more step further. When
there is a time constraint, we introduced an explicit urgency cost that increases over time to model
time pressure. Thus, the total cost can be written as:

ctotal = csample + αt (17)

where α controls the urgency cost. When α = 0, there is no time constraint. When α increases, time
pressure becomes stronger.

To find the optimal policy for this problem and delineate the optimal thresholds over time, we used
dynamic programming approach, computing the value function by value iteration following Bellman’s
optimality:

V ∗(b, t) = max

R0(bt,⊥)︸ ︷︷ ︸
Choose H0

, R1(bt,⊥)︸ ︷︷ ︸
Choose H1

, −c+ Ex|b [V (b′(x))]︸ ︷︷ ︸
Sample

 (18)

After obtaining the whole value function by iterating over every possible belief over time steps,
we then derived the optimal policy π∗(bt) by choosing the action that has the largest value. We
defined the threshold as the transition belief states where the optimal policy changes from sampling
to committing to target A or B.

We tested the optimal model under different combinations of sampling cost and urgency cost. When
there is only sampling cost (Fig. S2A), the optimal policy exhibited early commitment behavior at
the earlier time steps. The early commitment effect becomes less prominent when the sample cost
increases, which is consistent with our findings in the neural network. Then, we changed the levels
of urgency cost and fixed the sample cost at -.01 (Fig. S2B). The optimal policies show collapsing
boundaries at the late stage. Increasing the urgency cost leads to steeper declines of the boundaries.

Figure S3: Optimal policy under different cost structure (A) We set urgency cost to 0 in this test,
and changed the sampling cost as follows: 0.005, 0.01, 0.02, 0.05, 0.1. The asteroids indicated the
maximum/minimum of each curve. (B) We fixed the sampling cost at 0.01 and changed the urgency
cost α as follows: 0.001, 0.002, 0.005, 0.008, 0.01. Here we used the same Gaussian distributions as
used in the training of the neural networks.
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A.6 Revealing the model’s decision weight on each stimulus

A.6.1 Estimating the decision weight of each stimulus on the model’s choices

To estimate the subjective weight of each stimulus on the RNN’s binary choices, we performed the
following logistic regression:

logit(P (chosen B)) = β0 +

8∑
i=1

βini (19)

Here ni is the count of each stimulus that appeared in each trial. We then used the fitted logistic
coefficients βi to quantify the contribution of each stimulus to the model’s choices and compared
them to the ground-truth logLR of each stimulus.

A.6.2 Estimating the model’s decision weights on evidence over time

The sequential order of a stimulus might impact the model’s decision weight on the corresponding
evidence. To test this hypothesis, we performed a logistic regression over time steps,

logit(P (chosen B)) = β0 +

T∑
t=1

βt · logLRt (20)

Here, T is the decision time, logLRt is the ground truth evidence provided by the stimulus at every
time step, calculated as the log-likelihood ratio of the sampling probability between the two target
distributions. We used the fitted logistic coefficient βt to indicate the model’s decision weights on
evidence at different time points of a sequence.

Here, we found that RNNs trained from both environments exhibited recency bias (Fig. S4); the
pattern was stronger in the environment 1. This informed an intriguing strategy of unequal temporal
weights on evidence when under the adaptive decision strategies.

Figure S4: Temporal weights of the RNNs on evidence over time. The top and bottom panels showed
the logistic regression weights and its matrix (β) of the RNNs’ choice on the evidence over the time
steps before decisions under two environments. Colored lines indicated the trials aggregated by
reaction times. The figures were made with a same sampling cost (c = 0.01 in both environments).
(A) Agent exhibited strong recency bias in environment 1. The temporal weight at earlier evidence
declined when a decision was made later. (B) Agent in environment 2 also exhibited recency bias
overall, but the temporal weights in the earlier time steps approached a similar levelthen showed a
large reduction at the last time step.
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A.7 Investigating the internal representation of the hidden states

To examine how environmental structure shapes the internal representations of the neural network,
we performed principal component analysis (PCA) on the hidden states. We plotted the first ten
principal components for environment 1 and environment 2 (Fig. S5A). The results revealed that
in the absence of a time constraint, the first principal component alone explained more than 80%
of the variance. In contrast, when a time constraint was imposed, the second principal component
increased largely in capturing the variance: the first component accounted for approximately 45%
of the variance, while the second component explained nearly 40%. This shift suggested that time
pressure altered the dimensional structure of the network’s internal representation.

We further found that the first principal component (PC1) in both environments was selectively
associated with the cumulative logLRs, rather than with other task variables (e.g., stimulus identity,
sampling probability, and etc.). The activation of PC1 exhibited an approximately linear relationship
with cumulative logLRs at each time step, indicating a near-optimal encoding of evidence (Fig. S5B).
To validate this representation, we computed the cross-temporal correlation between PC1 activity at
time step i and cumulative logLR at time step j (Fig. S5C). The strongest correlations appeared along
the anti-diagonal of the heatmap, indicating that the agent continuously tracked the evolving evidence
over time. These findings suggested that even though the logLRs of evidence were not explicitly
provided to the agent, it learned to internally represent this key decision variable and performed
evidence accumulation in an information-theoretically optimal manner.

Interestingly, the agent in the environment 2 showed a feature that represented the time-coding
information when we plot the hidden states of some example trial trajectories in the 2D space of PC1
and PC2 (Fig. S5D). Just like the time-varying decision boundaries shown in Fig. 2, the trajectories
of hidden states also exhibited a boundary-hitting like feature, with early commitment in the earlier
decision trials. However, when we checked the environment 1, we did not find a large impact from
the PC2 direction.

Figure S5: Internal representation of the hidden states under the two environments. The top and
bottom rows showed the results in environment 1 and environment 2, respectively. (A) The scree plot
for the first 10 components. PC1 accounted for 80% of the variance in the environment 1, and the
second component increased largely in the environment 2. (B) 2D-histogram on PC1 activity and
cumulative evidence (logLR) at time step 8. PC1 exhibited a strong correlation with the cumulative
evidence in both environments. (C) The correlation between PC1 activity at time step i and cumulative
evidence at time step j. The strongest correlation appeared at the anti-diagonal lines. (D) The example
trial trajectories when projecting the hidden states into 2D space of PC1 and PC2. PC2 revealed the
representation of time in the environment 2 but notin the environment 1.
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material?
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7. Experiment statistical significance
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Answer: [Yes]
Justification: We provides the definition of error bars in the results section.
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• The answer NA means that the paper does not include experiments.
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dence intervals, or statistical significance tests, at least for the experiments that support
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] ,
Justification: Please refer to the Code availability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms with the NeurlIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the discussion section of the paper
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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non-standard component of the core methods in this research? Note that if the LLM is used
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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